

# 2. ICT 발전지수로 본 주요국 ICT 경쟁력 비교

주 재 욱 부연구위원, ICT통계분석센터

#### • 데이터 및 분석 목적

- ICT 발전지수(IDI, ICT Development Index) 개요
  - ITU(국제통신연맹, International Telecommunication Union)는 UN 산하의 국제기구이며, ICT(정보통신기술)와 관련된 이슈를 전담하는 조직으로, 주파수 이용, 위성 궤도 할당, 개발도상국 인프라 지원 등의 업무를 담당
  - 1865년에 최초로 설립되었으며, 본부는 스위스 제네바, 가입국은 총 193개국
  - ITU는 "정보사회측정(Measuring the Information Society)"이라는 보고서를 통해 매년 IDI를 발표
  - IDI는 국가의 ICT 발전과 관련된 11개의 지표를 결합한 지수로, 국가별로 ICT의 발전 정도를 비교하기 위해 작성
  - IDI는 2008년 ITU에 의해 개발되기 시작했으며, 2009년에 처음으로 발표된 이후 매년 발표
  - IDI는 국가 간 비교가 가능한 ICT 지수를 개발해 달라는 회원국들의 요구에 따라 만들어짐
- o IDI의 목적
  - IDI가 측정하고자 하는 대상은 아래 〈표 1〉과 같음

〈표 1〉IDI가 측정하고자 하는 내용

- 1) ICT 발전의 수준과 시간에 따른 진화를 다른 국가와 비교
- 2) 선진국과 개발도상국 간의 ICT 발전을 비교: ICT 발전의 서로 다른 단계에서 발생하는 변화를 반영
- 3) 정보격차(digital divide): 서로 다른 ICT 발전정도를 가진 국가들 간 차이
- 4) ICT 개발잠재력 또는 성장과 발전을 위해 국가가 사용가능한 역량과 기술에 기초하여 ICT를 활용하는 정도

출처: ITU(2014)



#### • IDI의 개념적 프레임워크

- 기본인식
  - IDI는 ICT가 국가의 발전을 가능케 하는 요소(development enabler)이며, 3단계의 발전 과정을 거친다는 인식을 기반
- ICT의 3단계 발전 과정
  - 단계 1: ICT 준비(readiness) 네트워크 인프라 및 ICT 접근 수준
  - 단계 2: ICT 집중(intensity) ICT의 사회활용 수준
- 단계 3: ICT 효과(impact) ICT를 효과적으로 활용한 결과
- IDI의 분류
  - 접근(access): 인프라와 접근의 활용
  - 활용(use): 높은 수준의 ICT 이용
  - 기술(skills): ICT를 효과적으로 이용할 능력
- 하위 지수(sub-index)
- 1) 접근(access) 준비(readiness): 유선전화가입자, 휴대전화가입자, 인터넷 사용자 당 국제 인터넷 이용량, 컴퓨터를 가진 가구 비율, 인터넷에 연결된 가구 비율
- 2) 활용(use) 집중(intensity): 인터넷 이용자 비율, 유선인터넷 가입자, 활동적인 모바일 인터넷 가입자
- 3) 기술(skills) 역량(capability): 성인문자해독률, 중등교육, 고등교육\*
- \* 해당 하위지수들은 직접적인 측정 데이터의 부족으로 인해 선택된 proxy이므로 다른 하위 지수들에 비해 가중치가 낮음
- 기타 특징
  - IDI는 정보사회의 이행 단계에 따라 측정항목의 선택이 다를 수 있음
  - 예) 과거에는 기초인프라가 유선전화였는데, 유무선 대체가 진행됨에 따라 기초인프라로서의 유선전화의 연관성이 감소
  - 예) 브로드밴드 인터넷은 현재 첨단기술로 간주되어 2단계의 측정 기준이 되고 있으나, 미래에 필수요소가 될 경우, 1단계의 측정 기준으로 이동할 것임

#### ● IDI의 측정 방법

- IDI 구성 요소
  - IDI는 총 11개의 측정 항목으로 구성

〈표 2〉IDI의 세부 측정 항목 및 가중치

| ICT 접           | ICT 접근(access)                     |    |    |  |  |  |  |
|-----------------|------------------------------------|----|----|--|--|--|--|
|                 | 1. 거주자 100명 당 유선전화 수               | 20 |    |  |  |  |  |
|                 | 2. 거주자 100명 당 이동전화 가입자 수           | 20 | 40 |  |  |  |  |
|                 | 3. 인터넷 사용자 당 국제 인터넷 사용량(bit/s)     | 20 | 40 |  |  |  |  |
|                 | 4. 컴퓨터를 가진 가구의 비율                  | 20 |    |  |  |  |  |
|                 | 5. 인터넷 접속이 되는 가구의 비율               | 20 |    |  |  |  |  |
| ICT 활           | ICT 활용(use)                        |    |    |  |  |  |  |
|                 | 6. 인터넷을 이용하는 개인의 비율                | 33 | 40 |  |  |  |  |
|                 | 7. 거주자 100명 당 유선 인터넷 가입자 수         | 33 | 40 |  |  |  |  |
|                 | 8. 거주자 100명 당 적극적인 모바일 브로드밴드 가입자 수 | 33 |    |  |  |  |  |
| ICT 기술(skills)* |                                    |    |    |  |  |  |  |
|                 | 9. 성인 문자해독률                        | 33 | 20 |  |  |  |  |
|                 | 10. 중등교육 등록 비율                     | 33 | 20 |  |  |  |  |
|                 | 11. 고등교육 등록 비율                     | 33 |    |  |  |  |  |

출처: ITU(2014)

#### ○ IDI 측정 항목의 선정 기준

- 본래의 목적에 기여하는 특정 측정항목의 연관성과 IDI의 개념적 프레임워크. 예를 들어, 개발 도상국이나 선진국과 관련된 필요가 있는 측정항목들은 위에 서술된 프레임워크의 세 가지 콤포넌트를 반영해야 함
- 데이터의 입수 가능성과 질. IDI는 글로벌 지수이기 때문에 매우 많은 수의 나라의 데이터가 필요하였으나, 아직 상당수 개발도상국의 가구 데이터가 부족한 상황에서 proxy를 사용
- 다양한 통계 분석 결과. 측정된 변수들 간의 연관성을 고려하기 위해 주성분분석(principal component analysis)\*이 사용됨
- \* 주성분분석: 다변량 데이터를 분석하는 통계 기법의 하나로, 관측치 분산의 크기 순서에

<sup>\*</sup> ICT 기술의 경우, 직접 측정 데이터 부족으로 대리변수(proxy)를 사용하였고, 비율은 접근 및 활용 지수에 비해 상대적으로 작게 책정



따라 좌표를 직교변환(orthogonal transformation)하여 서로 상관관계가 없는(uncorrelated) 변수들의 집합으로 재구성하는 것으로, 관측치의 주성분을 추출하는 방법

o IDI의 산출 순서

데이터 준비 (preparation) 
다 데이터 표준화 (normalization) 
다 대시되고 (rescaling) 
다 가중치 부여 (weight)

## ● 상위 20개국의 IDI 변동 추이

〈표 3〉 주요국 IDI 및 순위 변동 추이

|       | 2013 |      | 2012 |      | 2011 |      | 2010 |      | 2008 |      |
|-------|------|------|------|------|------|------|------|------|------|------|
|       | 순위   | IDI  |
| 덴마크   | 1    | 8.86 | 2    | 8.78 | 3    | 8.18 | 3    | 8.01 | 3    | 7.46 |
| 한국    | 2    | 8.85 | 1    | 8.81 | 1    | 8.51 | 1    | 8.45 | 1    | 7.80 |
| 스웨덴   | 3    | 8.67 | 3    | 8.68 | 2    | 8.41 | 2    | 8.21 | 2    | 7.53 |
| 아이슬란드 | 4    | 8.64 | 4    | 8.58 | 4    | 8.12 | 4    | 7.96 | 7    | 7.12 |
| 영국    | 5    | 8.50 | 7    | 8.28 | 11   | 7.63 | 14   | 7.35 | 10   | 7.03 |
| 노르웨이  | 6    | 8.39 | 6    | 8.35 | 6    | 7.97 | 11   | 7.39 | 8    | 7.12 |
| 네덜란드  | 7    | 8.38 | 5    | 8.36 | 7    | 7.85 | 7    | 7.60 | 5    | 7.30 |
| 핀란드   | 8    | 8.31 | 8    | 8.27 | 5    | 7.99 | 5    | 7.89 | 12   | 6.92 |
| 홍콩    | 9    | 8.28 | 11   | 8.08 | 10   | 7.66 | 12   | 7.39 | 6    | 7.14 |
| 룩셈부르크 | 10   | 8.26 | 9    | 8.19 | 9    | 7.76 | 6    | 7.64 | 4    | 7.34 |
| 일본    | 11   | 8.22 | 10   | 8.15 | 8    | 7.77 | 8    | 7.57 | 11   | 7.01 |
| 호주    | 12   | 8.18 | 12   | 8.03 | 15   | 7.54 | 21   | 6.75 | 14   | 6.78 |
| 스위스   | 13   | 8.11 | 13   | 7.94 | 12   | 7.62 | 9    | 7.48 | 9    | 7.06 |
| 미국    | 14   | 8.02 | 14   | 7.90 | 16   | 7.35 | 16   | 7.11 | 17   | 6.55 |
| 모나코   | 15   | 7.93 | 17   | 7.72 | _    |      | _    |      | _    |      |
| 싱가포르  | 16   | 7.90 | 15   | 7.85 | 14   | 7.55 | 10   | 7.47 | 15   | 6.71 |
| 독일    | 17   | 7.90 | 18   | 7.72 | 17   | 7.33 | 15   | 7.18 | 13   | 6.87 |
| 프랑스   | 18   | 7.87 | 16   | 7.73 | 19   | 7.26 | 17   | 7.08 | 18   | 6.48 |
| 뉴질랜드  | 19   | 7.82 | 19   | 7.62 | 18   | 7.31 | 18   | 7.03 | 16   | 6.65 |
| 안도라   | 20   | 7.73 | 24   | 7.41 | _    |      | _    |      | _    |      |

출처: ITU(2014)

#### ○ 주요 변화(2008~2013)

- 조사대상국가는 2008년 152개국에서 2013년 166개국으로 증가<sup>1)</sup>
- 전체 조사대상국가의 IDI 평균은 2008년 3.62에서 2013년 4.77로 증가
- 종합 지수 8.0이상의 고발전국가의 수는 2008년 0개에서, 2010년 3개, 2011년 4개, 2012년 12개, 2013년 14개로 꾸준히 증가
- 한국, 덴마크, 스웨덴이 2008년 이후 최상위 3위권을 유지하였으며, 특히 한국은 IDI가 처음 발표된 이래 2012년까지 1위를 유지하다 2013년 2위로 하락
- 조사 기간 중 가장 큰 폭으로 상승한 나라는 영국과 핀란드로 2008년 세계 10위, 12위에서 2013년 5위, 8위로 각각 상승

〈표 4〉 주요국 IDI 세부 항목 지수

### 접근지수

|     | 유선전화가입률 |      | 이동전화가입률 |       | 인터넷이용률 |      | 컴퓨터 보유가구 |      | 인터넷 보유가구 |      |
|-----|---------|------|---------|-------|--------|------|----------|------|----------|------|
|     | 2012    | 2013 | 2012    | 2013  | 2012   | 2013 | 2012     | 2013 | 2012     | 2013 |
| 덴마크 | 41.1    | 37.4 | 130.3   | 127.5 | 176    | 261  | 92.3     | 93.1 | 92.0     | 92.7 |
| 한국  | 61.4    | 61.6 | 109.4   | 111.0 | 26     | 30   | 82.3     | 80.6 | 97.3     | 98.1 |
| 영국  | 52.9    | 52.9 | 124.8   | 123.8 | 291    | 352  | 87.2     | 88.2 | 86.8     | 88.4 |
| 핀란드 | 16.4    | 13.9 | 172.3   | 171.7 | 161    | 172  | 87.6     | 88.7 | 86.8     | 89.2 |

## 활용지수

|     | 인터넷유      | 우저비율 | 유선인터 | 넷가입률      | 무선인터넷가입률 |       |  |
|-----|-----------|------|------|-----------|----------|-------|--|
|     | 2012 2013 |      | 2012 | 2012 2013 |          | 2013  |  |
| 덴마크 | 92.3      | 94.6 | 38.8 | 40.2      | 97.4     | 107.5 |  |
| 한국  | 84.1      | 84.8 | 37.2 | 38.0      | 105.1    | 105.3 |  |
| 영국  | 87.5      | 89.8 | 34.4 | 35.7      | 77.0     | 87.2  |  |
| 핀란드 | 89.9      | 91.5 | 30.4 | 30.9      | 106.6    | 123.6 |  |

<sup>1)</sup> 모나코와 안도라가 2012년부터 조사 대상에 포함됐으며, 2011년 세계 13위였던 마카오는 2012년부터 조사 대상에서 제외



#### 기술지수

|     | 중등        | 교육    | 고등        | 교육   | 성인문자해독률 |      |  |
|-----|-----------|-------|-----------|------|---------|------|--|
|     | 2012 2013 |       | 2012 2013 |      | 2012    | 2013 |  |
| 덴마크 | 124.7     | 124.7 | 79.6      | 79.6 | 99.0    | 99.0 |  |
| 한국  | 97.2      | 97.2  | 98.4      | 98.4 | 99.0    | 99.0 |  |
| 영국  | 95.4      | 95.4  | 61.9      | 61.9 | 95.2    | 95.2 |  |
| 핀란드 | 107.7     | 107.7 | 93.7      | 93.7 | 99.0    | 99.0 |  |

출처: ITU(2014)

#### • 주요국 IDI 세부 항목 분석

#### 이 데마크

- 2013년에 1위를 차지한 덴마크는 고숙련 인구를 보유한 기술주도(technology-driven)형 소국 으로 신기술의 도입이 매우 빠른 나라
- EU의 조사에 따르면 덴마크 인구의 85%는 중급 수준(some levels)의 컴퓨터 스킬을 보유하고 있으며, 이는 EU 전체 평균인 67%를 크게 상회
- 또한 인구의 42%가 고급 수준의 컴퓨터 스킬을 보유하고 있음
- 2010년 기준, 디지털 경제의 GDP 대비 비중이 5.8%이며 계속 상승 중
- 특히, 유럽 재정위기 이후 덴마크 정부는 ICT 산업을 경기 회복 및 경제 성장의 주요 해법 으로 제시하여, 최근 ICT가 급속도로 발전하는 계기를 마련
- 인프라가 고도로 발달되어 있으며, 접근지수는 8.84, 93%의 가구가 컴퓨터를 보유하고 있고, 인터넷에 연결되어 있음
- 덴마크 정부는 2020년까지 모든 가구에 최소 100Mbps 속도의 인터넷을 공급한다는 목표를 수립하고 있음
- 덴마크는 IDI 활용 세부지수가 세계 1위이며, 무선인터넷 가입률은 107%로 스웨덴이 이어 세계 2위, 유선인터넷 가입률은 40%로 세계 1위

#### ○ 영국

- 영국은 2008~2013 기간 동안 IDI 기준 상위 10개국 중 가장 큰 폭으로 상승한 국가(10위 → 5위)
- 영국의 ICT 시장은 독일에 이어 유럽 2위 수준

- \* 2011년 기준 약 920억 유로(자료: Forrester)
- 30 Mbps 속도 이상의 초고속 인터넷 보급이 꾸준히 상승하고 있으며, 초고속 인터넷 보급 률은 2012년 65%에서 2013년 73%로 증가
- 영국 정부는 2016년까지 90% 이상 보급을 목표로, 인구과소 지역에 인터넷을 보급하기 위해 약 5억 3천만 파운드의 예산을 조성
- 특히, 영국은 보유하고 있는 공공정보 데이터베이스를 민간이 활용할 수 있도록 클라우드로 관리되는 전자정부 시스템을 구축
- 영국 교육부는 4단계의 ICT 교육과정을 마련하고 있으며, ICT 과목을 필수과목으로 지정, 소프트웨어를 포함한 초중등학교 ICT 교육을 강화

#### ○ 핀라드

- 핀란드는 인구 약 540만 명, GDP 2,670억 달러(2013년 명목)의 선진국
- 복지 수준과 교육 수준이 매우 높은 나라로, OECD가 실시한 국제학력평가(PISA)에서 2000년 에서 2006년까지 세계 1위
- 이동전화 제조업체인 노키아가 대표적인 기업이었으나, 노키아 몰락 이후엔 우수한 인력과 ICT 인프라를 바탕으로 스타트업이 활발
- \* 모바일 게임 앵그리버드를 개발한 로비오는 전세계적으로 수십억의 다운로드를 기록하고, 연매출 약 2천억 원을 기록
- \* 클래시 오브 클랜으로 유명한 수퍼셀은 연 매출 1조 원을 돌파, 2013년 10월, 1조 7천억 원 (지분 51%)에 소프트뱅크에 인수됨

## • 선진국과 개발도상국 간 디지털 격차

#### ○ 2013년

- 2013년 선진국의 IDI 평균은 7.20인 반면, 개발도상국은 3.84로 약 절반 수준
- 2012~2013 기간 동안 선진국과 개발도상국의 평균 IDI는 각각 +0.18, +0.17 증가하여 거의 같은 폭으로 상승
- 이는 선진국과 개발도상국 간의 격차가 좁혀지지 않고 있음을 의미
- 선진국 간 지수의 분포와 개발도상국 간 지수의 분포를 보여주는 분산계수(coefficient of variation)는 2013년 기준, 선진국이 14.24, 개발도상국이 46.93으로 개발도상국 간 IDI의 격차가 큰 것으로 나타남



〈표 5〉 발전 수준 별 IDI, 2012-2013

|       | 평균   | 표준편차 | 분산계수  | 평균   | 표준편차 | 분산계수  | 평균 변화 |
|-------|------|------|-------|------|------|-------|-------|
| 세계    | 4.60 | 2.19 | 47.61 | 4.77 | 2.22 | 46.44 | 0.17  |
| 선진국   | 7.03 | 1.08 | 15.29 | 7.20 | 1.03 | 14.24 | 0.18  |
| 개발도상국 | 3.67 | 1.75 | 47.61 | 3.84 | 1.80 | 46.93 | 0.17  |

출처: ITU(2014)

#### ● 시사점

- ICT 발전지수는 이용자의 관점에서 ICT 서비스에 대한 접근과 ICT 기술의 활용 수준을 측정한 지수
- ICT 산업 또는 공급 측면에서의 지표라기보다, ICT 수요 측면에서의 지표로 해석하는 것이 타당
- ITU가 제시한 개념적 프레임워크에 따르면 ICT의 활용이 성장의 가능자 역할을 한다는 차원에서, IDI는 성장에 대한 잠재력으로 해석하는 것도 가능
- 향후, IDI로 측정된 국가의 ICT 발전 수준이, 궁극적으로 그 국가의 성장에 얼마나 기여했는 가를 살펴보는 것도 의미 있는 분석 작업이 될 것으로 보임
- 현재 불완전하게 운용되고 있는 ICT 기술지수의 경우, 전체적인 회원국들의 IDI가 상승함에 따라 그 중요성이 증가하고 있음
- 개발도상국의 측정 데이터들이 활용가능한 시점이 되면 선진국의 IDI도 다른 양상으로 나타날 것으로 예상됨

#### • 참고문헌

International Telecommunication Union (ITU), "Measuring the Information Society Report 2014," 2014.